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Section 1
INTRODUCTION

Three-dimensional flow effects play an important role in the perfor-
mance of axial-flow fans and compressors that operate at transonic speeds.
The coupling between transonic and three-dimensional effects limits the ap-
plicability of the two-dimensional analysis methods that have been in use for
some vears. Efforts to extend these analyses to three~dimensional transonic
cases have been aided greatly by the development of computational methods
for solving comparable problems in external aerodynamics. The applicable
external-flow methods can be divided broadly into two fields: those based
on the potential-flow approximation and tnsse that start from the Euler equa-
tions. The potential-flow category is further divided into the range of
small disturbances and the range where the full nonl.nearity of the problem

must be accounted for.

The nonlinear small-disturbance potential theory was developed, in a
1-5

orevious AFOSR-sponsored study at Calspan. That work consisted essentially

1. Rae, W.J., '"Nonlinear Small-Disturbance Equations for Three-Dimensional
Transonic Flow Through a Compressor Blade Row', AFOSR-TR-76-1082,
AD-A 31234 (August 1976).

2. Rae, W.J., '"Relaxation Solutions for Three-Dimensional Transonic Flow
Through a Compressor Blade Row, in the Nonlinear Small-Disturbance
Approximation', AFOSR-TR-76-1081, AD-A032553 (August 1976).

Gl

Rae, W.J., "Finite-Difference Calculations of Three-Dimensional Transonic
Flow Through a Compressor Blade Row, Using the Small-Disturbance Non-
linear Potential Equation', pp. 228-252 of Transonic Flow Problems in
Turbomachinery, ed. by T.C. Adamson and M.F. Platzer, Hemisphere
Publishing Corporation, Washington, (1977).

4. Rae, W.J., "Calculations of Three-Dimensional Transonic Compressor Flow-
fields by a Relaxation Method', Journal of Energy, 1 (1977) 284-296.
5. Rae, W.J., "Computer Program for Relaxation Solutions of the Nonlinear

Small-Disturbance Equations for Transonic Flow in an Axial Compressor
Blade Row', AFOSR-TR-78-0855, AD-A0S53744 (April 1978).
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of an application of the line-relaxation methods and Mach-number-dependent

differencing procedures pioneered by “Murman and Cole.6 Flow field calculations
were done, with the resulting computer code, for several blade rows and
operating conditions. These calculations showed interesting interactions be-

v tween the regions of subsonic and supersonic flow that develop within the

blade row.

The principal limitation of these results is, of course, the small-
disturbance assumption. The pressure ratios and turning angles of practical ‘
compressors exceed the range that can properly be called a small perturbation !
of the inlet conditions. Thus the role of the previous work is chiefly to

give qualitative information about the flow.

The present research was undertaken with the aim of extending this
earlier work, so as to handle more fully the nonlinearity of the problem.
As noted above, the two principal candidates for achieving this goal were the

nethods for solving the full nonlinear potential equation, and the time-marching

methods used for solving the Euler equations. The former approach has the j
advantage that only a single dependent variable needs to be stored, compared
with five dependent variables in the latter case. However, the potential-flow

approximation is restricted to isentropic flow. An additional consideration,

for treating the three-dimensional full potential equation were not vet de-
veloped. In contrast, a number of papers describing the "fully implicit" time

|
!
of considerable importance at the start of this research, was that methods k’
!
marching procedure had been published, and appeared to be capable of vielding i

results in a relatively straightforward way.7'9
:
.
6. Murman, E.M., and Cole, J.D., '"Calculation of Plane Steady Transonic ‘
Flows", AIAA Journal 9 (1971) 114-121. ;
7. Beam, R.M. and Warming, R.F., "An Implicit Finite-Difference Algorithm l
for Fvperbolic Systems in Conservation-Law Form', J. Comp. Phys. 22 i
(1976) 87-110. |
8. Steger, J.L., "Implicit Finite Difference Simulation of Flow About Arbi-
trary Geometrics with Application to Airfoils', AIAA Paper T7-665 ]

(June 1977).

9. KXutler, P., Chakravarthy, S.R., and Lombard, C.P., "Supersonic Flow Over
Ablated Nose Tips Using an Unsteadv Implicit Numerical Procedure",
ATAA Paper 78-213 (January 1978).




Accordingly, the time-marching method was selected for application
to the case of flow through an isolated compressor blade row. The adaptations
required include a coordinate transformation suitable for a cascade geometry,
modifications to enforce mass-flow conservation, boundary conditions upstream

and downstream of the blade row, and a means of accounting for the vortex

sheets which trail downstream of the blades.

The section below contains a review of the basic equations in absolute
and relative coordinates, including two versions of the energy equation. Also
described in this section are means for including the radius terms that appear

in cvlindrical coordinates, and some details about the coordinate transforma-

tion used and the metrics that result. The third section is a review of |
-

the finite-difference method, patterned after the Beam-Warming technique,’ :

while the fourth section contains a description of the boundary, wake, Kutta,

and exit conditions.

All of these elements were incorporated into a computer code, and
a number of attempts were made to carry out a sample calculation. These ef-
forts were not successful, due principally to the destabilizing effects of
singularities in the metric coefficients at the blade trailing edge, and at
the points corresponding to upstream and downstream infinity. Problems arising
from the points at infinity were overcome successfully, but no satisfactory

resolution of the trailing-edge problem was found.

The section on Concluding Remarks presents some suggestions for
further modifications that may be capable of treating the trailing-edge region

successfully, and a review of other computer-program elements that will need

further development, once the metric-induced instabilities are removed.




Section 2
BASIC EQUATIONS

Conservation-Law Forms

The Euler equations for unsteadv three-dimensional flow in cylindri-

cal coordinates x , r , @ may be written in conservation form as (see, for
example, Reference 10)

Tty + ok + ey v Loy = 0

(rp )+ —(f[p+,ov 1) + —(rpv )+ —(pV =0
(rpV)+—(rpVV)+——(r[/o oV, J)ri(pVV)=7o oV
at dx d6 " T8
i(r‘p‘/)+-a—-(rpv V,) + .Q_(rp )+_ + = - pVV
ot 8 7% x Ve o (P pg)— PV, 1,

7 3 3 9
27+ 53 riyle+pl) + -a—r(rvr/_’equ) * 3_9(%[’3”’”

-l
where V is the absolute velocity, v and p are the pressure and density, and €

is the total energy per unit volume:

2 2-2
e=p[CVT+ZlV] (2-2)

10, Vinokur, M., '"Conservation Equations of Gasdynamics in Curvilinear Co-

ordinate Syvstems', Journal of Computational Physics, 14 (1974)
pp. 105-125.




. . . . 1
These equations are written in the absolute coordlnates.1

They may be
cast in terms of blade-fixed coordinates by the transformation
/ ' ’
t =t , r'=sr, @ =6-wt , x'=x
War.:vx)l"/r:l/rawg’vg_wr

where W is the velocity relative to the blades.
these equations have the form:

apr) 3 2
e gz (Fewe) Fr (7PWr) t 55 (pg) =0

XA i 2 d
PP (rowy) + 3z (r[pf-pwx]) + 3 (rpw,w,.) + a%(pw%w@) =0

2, ?
S (rpwr) +

3 . 2 3 .7 .
38 TPVe) £ 5 (rpbx ) + Zo(rpww,) + 26 (PHOWG) = =20rpw, ~pw 4,

— (rpI) + 32 (rw,gpl) + —a—F(rw,,oI) + 3_6(W9/OI) = a—t("P)

where [ is the rothalpyv:

2
I= ¢, 7+ 2

1 )
o > 5 (wr

There are two features of these equations that make it difficult to applyv the

time-marching algorithms developed for external flow. The first is the

11. Wu, C.H., "A General Theory of Three-Dimensional Flow in Subsonic and

Supersonic Turbomachines of Axial -, Radial -, and Mixed-Flow Types",
NACA TN 2604 (January 1952).

After dropping the primes,

sz re )+ L(rlpepwi]) ¢ o) = popiayeor)




T T e e TR -

appearance of the time derivative on the right side of the energy equation;
in seeking a steady-state solution, it is not clear whether this term should
be set equal to zero or evaluated from previous time steps, and the external-
flow literature offers no guidance on this question. A preferable form of

the energy equation is

7 2 2 9 _
7 (rK) + 55 (rWxlK+pl) + 52 (rW[K+p]) + 5 (Wy[K+p]) =0
(2-6)
where — _ 14 P 2_ 2
Kz pl-p = ¥ 7 [w (ewor) } (2-7

A second awkward feature of these equations is the appearance of
the variable r, inserted in several places in order to preserve strict con-
servation-law form. These appearances require frequent numerical evaluations,
most of which can be avoided if the strict conservation form is relaxed

slightly, by associating the r - factors only with the & - derivatives:

e, 2 2 12 oW,
9t T ax (PR n (PRI g (pWg) = - —
3 3 2\ . 2 .3 o Wi Wy
57 (o) » 7 (P oW ) v Do)+ £ B o) - 252

J 3 9 2 19
‘a—t (pwr')+ ﬁ (PW,LW,.) + —a—r (fO+,0Nr.)+ P a—e—(pwrwe>

_PrANS  paplWy twr]®

r r
2 J 2 1 _d
37 (PWe)+ S (PN Wg)+ 2= (p iy ) + - a—e(p+,ow;>

_ Py PW,(2wr + Wg)
r r

=

9K , 2 3 T3 W
o + 37 (Wx(K‘*P))ﬂ“ %‘(Wr(}("'P))"' T e (WQ(K+P))= - 7"(1«’4-70)

(2-8)




Dimensionless Forms

The Euler equations can be made dimensionless in terms of reference

values of length, L. velocity, U, and density f,.; , and by dividing

L . z
the cont1nu1;y, meomentum, and energy equations by .pref Ures v Pref Ures
and /0,64 U ref , respectively. Thus each term in the above equa*ions may

be considered as a dimensional quantity, or its dimensionless equivalent.

The time, for example may be taken in phvsical units, or in units of Lvet /Upes -

These equations can be written in terms of the following five-compo-

nent vectors:

v, & dF 136 | H-F
it 4 r r 36 r (2-9)
where oW, \ o i
o promd | oy
PW, |5 E= OW Wy |, F= ~p+p\r\1r2 .
P We P W x Wy P Wy Wy
\ Wy (K+p) Wy (K +4)
(2-10]
P W \ 0 \
P Wy Wy 0 \
G = | PWr Wy , H = f' p+p(Wg +wr)? ‘\‘
“P*PW; [\ P W, (2wr + Wg) )
\ (2-11)

Wg (K+ P \ o

PRI U P ST




ey

If these equations are subjected to the general coordinate

transformation
T’t7 §'=5(74)r‘,8,t), ’l”l(Z,f‘,e,t)g;=;<x,f‘,e,t)

(2-12)
2
then, bv following Viviand'sl' derivation, it can be shown that the Euler

equations retain conservation form, i.e.,

) (U),,.. 3 (r[U§t+E€Z+F€,«J+G§) r‘[th'#Eq:;Fr]',]«que)

|

+-

1_(rEU§t+E§;+F€rJ+GCa)
I r A

_ H-F G 21 L 3 (1
N 75{%9*; (F) * e 57 (7) * Se 32 f)}

where the zero term on the right side results from adding appropriate terms

to achieve the conservation form, and where &3 is the Jacobian:

gi gr é@
JUAS ST P ‘
Tz re T |2 T |

(2-19)
Zx 5 Go

These can also be written as

12. Viviand, H., "Formes Conservatives des Equations de la Dynamique des
Gaz'", La Recherche Aerospatiale (1974), >No. 1, January-February,
pp. 65-66.




(2-15)
O=:g-’g = [U§t+E€,+F€r+Gf°]/,e

E = [Ub’]t+E/)x+F'/]r+Gg°]/.®

A &

G = [Ug, ¢ Eq, +Fg, + 2] /&

~ _  H-F (2-16)

Ho= rQ

Finally, by inserting the definitions of E, F, and G, the vectors

’~

-~ ~
E , F, and G can be written as

at oW, P
pw1wz+‘f3€x szwx"'?o/h Pw3wx+‘p51

o 1 i 1 2l
E:E PW,Wp + P&, ’Fz,-é' PW, Wp+pNr 3C'=§ PWsWe+pZ,

pPU Wg+ pEg/r P W, Wg+ pNg/r PWyWgtpg /r
(Ktp)W,-ré, (K+P) Wy - pne (K+p)Wy-pz,

(2-17)

where W1 ) Wa and W5 are the contravariant components of the velocitv vector:




So
gt"'wxgx + Wr‘ir+ WG_F—

>

8
Net Wy + Weh, + Wo =%

Z’t t w‘x ;-; t W, + We i: (2-18)

X
n

Note that in most places the factor r appears as a divisor of the metrics of
the third column of &, for example as gg/r; thus only the ratio §9/n needs

to be stored at each grid point, rather than both factors.
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Section 3
FINITE-DIFFERENCE METHOD

The algorithm presented by Beam and Warming’ is applied as follows:

(here, the superscript n denotes the time level of the solution):

0™ - gne At [(—93)" r (3_0_)”“] rocaty’

o

=y &L L, = +< PR LA
2 7 in Iz TR PR T-
|
At an N+ 3
+ —2—- [H + H +j] + 0{at) (3-1)

ENYT 2 ENL A0S 07) + ocat)®
FP* 2 Ere B (U™ - 0") + o)t
G" s T (U0 v 0wt

A A

A < A"+ D 0™ -0") + owt)? (3-2)

where the coefficients in the expansion are the matrices:

N Y ;
g-:‘a—é-,B:—a———,c:L,D:L/i

Ju au du du
£ =AU , F=80 , &=20CU, H=00

This enables the equation to be written as

11




3 (3-4)
—2— + O(At)

(3-5)

where I is the identity matrix.

Certain terms are now added, of order (zxt)z
and (z&t)3 , which have the effect of '"completing the cube" on the left-hand
side, so that it can be factored as:

At 9 o At 3 ,n At [ 3 An_ A" G N4
I+ —=— —A~A I+ = —8 I+ == [—— c”-0 U

] At 3

=101+ 5 57 2

? ot d
7 87

TC"—Dn:' ‘Laﬂ
1 2 Lig )]
- t .J—E. gF + _9_9_ - -+ O(Atg) (3'6)
€ in s
Following Beam and Warming, this equat.on is rearranged as
12




(1+ & LA (1 E L B7)(1+ 5[ e 5"])} al

n

- ﬁ} + 00a1)? (3-7)

_ _JaE _3F G
) AT{3€+24+9;

where AU

The matrices A, B, C, and D (without the ( ™ ) symbol) are defined as

E = AU, F=8BU, G-=cCU, H= DU (3-8)
The relations between the two sets are
E:Igt+ngx+sg,+c—§—rﬁl
§=Irzt+9rzx+5r)r+cq—:
8=vat+n;%+3;r+c%
B:D;B (3-9)

The matrices A, B, C, and D are given in the Appendix.




Equation (3-7) is usually referred to as the "'delta form"” of the

algorithm. Its numerical solution is found by a sequence of three one-

dimensional solutions:

A A b e M

- -~ - n
AT 3 2n ~ % 2E aF & .
I+ — — A ) AU = -AT + + - H}
( 2 Jg ) {96 an g
{
/ A_‘L: _9__“n_ An Ak B ~u
(1+ 5[5 8 D})Au a0 i
AT 3 A S N k%
(I+ et a_z,—c )au = Al (3-10) J

Here the term D has been placed in the second step, in order to facilitate
the calculation of two-dimensional cases, which bypass the radial solution
step altogether. This term can be placed in any one of the three steps, with

no change in the truncation error.

Damping Terms

The numerical algorithm described above, which uses central dif-
ferences for the spatial derivatives, requires the addition of certain damping

terms for stability. These terms are added by rewriting Eq. 3-10 as follows:

. " 2 2 . 2

T2 e B 3Lf Y
) r A’E L AN Aﬂ— 69(A;)2 62 A !
Jl1+ > (75 8 -0 5 5o o) al :
~ A - n
_ _M{QE L 9F 36
& In g
€g AT | + + _3* + _2° 77y (5-11
- L < -11)
= {(Ag) e +(an) pPri (az) 3;4} (RU™)

14




The fourth derivatives on the right hand side are evaluated explicitly, using
central differences of data at the previous time step. At grid points next

to the boundaries, the second derivative is used.

The additional terms on the left side are treated implicitly, i.e.,
they appear as corrections to the coefficients of the block tridiagonal

matrix equations.

Step-Size Considerations

For a fully implicit method, the time step would be limited only by
considerations of accuracy, and not by stability. As will be noted below,
the present application (and all of the external - aerodynamics literature
as well) uses boundary conditions that are explicit, and involves data one
time step behind. This introduces the problem of stability considerations, and

it is usually found that the time step must be on the order of that given by

the Courant-Friedrichs-Lewy condition:

mén(AE,Aﬂ,A@) (3-12)

moxX A o 12

At

where A denotes an eigenvalue of the matrices that appear in the nonconserva-

tive form of the Euler equations. For the present case, these differ only

slightly from the rectangular-coordinate set discussed by Warming, Beam, and
13

Hyett. The non-conservative forms of the equations are
Ju du I He ou
S AE R 222 - R 3-13
2t ' rar r 36 (5-13)

where

13. Warming, R.F., Beam, R.M, and Hyett, B.F., ''Diagonalization and Simulta-
neous Svmmetrization of the Gas-Dynamic Matrices', Mathematics of
Computation, 29, (1975) 1037-1045.

13




P We p 0 0 0 |
Wy o Wy 0 @ V,O 3
w = We |, A = 0 o W, 0 o0 )
We 0 o . o W, 0
© o pc 0 0 Wy
We ©0 p o0 0 Wo © 0 p O\
o W, 0 o0 o0 0 W ©0 © 0 ‘-\
Qr._. 0 0 wf 0 l/p , 'q@ = | (o) o We (@} o ‘
o o 0 W, 0 \a O 0 W, ’/,a/
0 7] pcz o W, o o 0 pct wg
- Pow,/r \
0
P
2
R = | (Wg + wr)”/r , ¢t = e (3-14)
\ —(awr‘f'ws)/r
\ 0

The eigenvalues of Qx, F)r , and 90 are W, W, , Wy, ¢ , and are related

to those of the conservation-law form by the similarity transformation
Fié = ﬁ? oo (3-15;

where rq}' is 4,, A,, or RB , 9} is A, B , or C (see Eq. 3-8), and @ is the
Jacobian matrix JU/7w :

o o o 0
Wy P o o 0
w = ‘ Wy o p o 0
W o 0 o
i ® i e (3-16)
L Wi ,
\ > PWyr PW, PW. A




1 o o 0 o
7 ~Wy /P 1/p 0 o %
W= - W, /p o /P o o
- Wg/la 0 g 1/p 0
¥
é(wﬂwzrz) “@B-D W, ~@-1)W, -(f-1)W, B-1
Thus
>\W‘ax = pax {7@6 + 7@4 Wx' + 7@2\/\/’, + %3 w&: %a + 7611&//( + 7@2 Wr + 7&31/\/9
2 3 z! :
e ’\/7é1 R, £y } (3-17) "
where %o,—é, ,‘/%2, and %Bare either 5-5"51,’5.»’5%’ ot M. u N Mro :

Ne 6
= OT G5 T Gy T

Coordinate Transformations and Metrics

The geometry of the axisvmmetric flow passage is used first, to

define the coordinate 1 as the fractional distance from hub to tip:

ZZ. YOI I

r- r,(x)
n= —— = n(x.r)
WW‘”’ rlx) - r (%)
v | %) (A
e a6 (3-18)
- @ —_—
Figure 1.

17 '
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iThe bullet-nose contour of the hub, at some distance upstream of the blade

row, must be replaced by some sort of a smooth transition). The intersection
of the blade surfaces with the surfaces n - constant defines a two-dimensional

cascade:

y = Y9-6()

Y
>

Figure 2.

This cascade is then mapped into a square, using the conformal transformat:
described in Reference 14. The correspondence of points in the cascade ar:

mapped planes is shown in Fig. 3.

The metrics calculated in the plane n = constant must be conver<:
to the three-dimensional quantities required by the general coordinate
transformation, where g s q , and Z are regarded as functions of X, r ,

O . 1If these metrics are calculated by differencing the coordinates the--
selves, the easiest way to proceed is to regard the sequence of planes | -
constant as determining r, 6 , and X for given values of §', 7, and £ .

difference formulas then can use:
-1
£y = (08 - ry06,) /B
-7
Ne = (56 - rg ) /D

Ty = (rp 0= M 0) /L7

14, Rae, W.J., "A Computer Program for the Ives Transformation in Turbo-
machinery Cascades', Calspan Report No. 6275-A-3 (November 1981,

18
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§, = (OpXp - 0, x,) /O

Mr = (Og X - Cpxp) /B
Zr = (Gxg-0Cx) /L7
8o = (Xnrg = Xgry)/ &7

To = (Xg7g - xs.rg)/,&"

= - -1 2
Lo = (Xerp xq%)/ﬁa (3-19)
where

oy e T e
-1
’@ = ’ ’ ) = ! = r f‘ f';
(&, n, 2 (8,75 ) £ N
a(x,r,0 1% O, O (3-20)

is the Jacobian of the transformation.

If the metrics in the r] = constant plane are evaluated analytically
(for example by conformal mapping, as in the examples used here), then they
will contain derivatives of the quantity r¢&, taken at constant X and n .

In order to extract the desired metrics, the chain rule is used, giving:

zE.) ] Ei> Ji) 21)
3% )y g 2% Inly , 1%/,

9N Y
228y 9_5>
T 995, 29 20
& £ P23 n
2= - 8% 2 i 51
ir/,e 3%)xn i 2ﬂ>z;} 3”>x (31

and similarly for the derivatives of Z .
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Section 4
BOUNDARY CONDITIONS

The algorithm described in the previous section is implicit, in that

the solution vector at all field points is updated by each sequence of three

one-dimensional solutions. The values of the solution vector at the grid

boundaries can be updated either as part of this implicit scheme, or explicitly.

In the former case, special finite-difference versions of the boundary con-
ditions must be developed, and incorporated into each of the one-dimensional
solution procedures. In the latter, the updating of the boundary values is

separated from the sequence of finite-difference operators used at the field

points, and lags one time step behind.

An explicit treatment at the grid boundaries is used in the current
program, in order to retain flexibility with regard to the coordinate
transformations used. If an implicit treatment of the boundary conditions
were used, the specific details of the transformation would have to be built

into the main solution algorithm.

Boundary conditions are needed for five variables: three velocity
components, and any two thermodynamic variables, for example, pressure,
density, rothalpy, total energy). The technique used in external-aerodynamic
studies (Reference 8, for example) is to use the surface tangency condition for
the three velocities, to extrapolate the density from nearby field points,
and to update the pressure using an expression for its normal derivative at

the surface.

Surface-Tangency Condition

Since the blade surfaces lie in the planes & = const., the surface

tangency condition is




D& W
Be T O TSt WaBitWelo# SR Z = W e

The expressions for the other two contravariant components are then added to

this, to give:

é,'»’% S So/r | Wy w1‘€t\
Ne M Me/r W = Wz"[r}

;‘K- @r ;9//' \A/g - ;t (4-2)

Numerical values for W, and %Q are found at the surface by extrapolation,
after which this equation is solved for the surface values of Wy, W,., and Wg .

A similar procedure is used at the hub and tip, with W, = 0 in that case.

Normal Pressure - Derivative Relation

The pressure at the surface Z, = constant is found by using an
expression for 2P/9g to extrapolate from the value a distance AZ away

from the surface. Two-dimensional counterparts of this derivative expression

are given in References 8, 9, 15, with relatively few details about their

derivation. The version appropriate to the present problem is:

15. Pulliam, T.H., and Steger, J.L., "On Implicit Finite-Difference Simula-
tions of Three-Dimensional Flow'", AIAA Paper 78-10, (January 1978).
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This is to be regarded as an expression for ?4/3Z on the blade surfaces

4 = constant, with all other quantities either known or found by extrapola-
tion. Its usefulness lies in the fact that it contains no time derivatives

of the dependent variables. The derivation of this equation is achieved by
summing the three components of the momentum egquation, multiplied respectively
by £, , 4, and g,/r . The resulting equation is then arranged into four
groups, containing derivatives with respect to 7, £ , # and Z respectively.
Within each of these groups, appropriate terms are added and subtracted so

as to form the quantity W3, which is zero. Expansion of certain of the & ,

N and & derivatives then leads to cancellation of a number of terms involving
the product of the pressure times derivatives of the metrics. Other terms

of this tvpe, which do not cancel, can be rearranged by noting the property

of the Jacobian that

R Z-R 4

2 Jx ~ 72 3 an dx 3 Ja (4=

where ot is X,r or 8. After these simplifications have been made, four of

the remaining -=rms can be recognized as the continuity equation; removing

these terms takes out the only remaining terms involving % - derivatives of




the dependent variables. Finally, it is necessary to add and subtract certain

. . ] .
derivatives of /9‘ and to use the relation

Sogp (g (F)* Soe () = 35 (7)= 0 -9

A similar relation for the pressure gradient normal to the hub and
shroud can be found, by summing the momentum equations, multiplied respectively

by Ny Nr s and qe(and then using rg= 0). The result is

P
—_E (Q¢c+wx qxt'+wqu2')

+

%l=

a d 2 2 )
155 (L6180 + £ L enh e 3 (e n,5)

3 Iw, x W,
bW, (qx%*'qrf)*pws (7;%"'7»-?2)}

2
= loqr [We+wr‘] /l"ae (4-6)

At & = %1, a symmetry condition is imposed, explicitly:

Ucti,1,6) = U(x1n-g) (4+-7)

Kutta Condition

The trailing-edge region is treated in the present work as though
the trailing edge were a cusp, i.e., the pressures and flow angles leaving

either side of the trailing edge are required to be the same, although the

velocity magnitudes may be unequal. For small trailing-edge included angles,




the application of the flow tangency condition on the blades would be expected

to produce nearly equal flow angles; thus in the present work, the pressures
were matched, bv updating the quantity K at the two points denoted by + and

- in Fig. 4. Thus:

U 2 2
L = (¥-1) [K——Z—’(w -(wr))]
B- = (F-1) [K+- K- a—’(Ufwf- U;wf)] =0 (4-8)
In order to set K' and K™, define
K = al (K*+ K')w (4-9)

where the notation <)a¢t signifies that these are values extrapolated to the

surface. Then calculate:

(AK)W = (K+_K—)W = _;_ [Ur+w+e'uy-w—e] (4-10)
K* = K3t L (aK)
"y e N
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Figure 4. Trailing-Edge Notation

Conditions at Infinity

The points at infinity ( g = 0, €’= : 1) are excluded from the grid

by using an even number of grid points in the & - direction:

Z=(L-1)AZ, L=1,2,..., LM; LMX even, Az = 2/LMX-1 (4-11)
The points at g =2 1, L= 1" and L = L” (where L~ is the integer part of
(LMX + 1)/2, and L" = L7 + 1 - see Fig. 3 - ) are assigned fixed values at

the beginning of the calculation, and are not changed thereafter. In par-
ticular, care is taken to avoid differencing across these points when applving

. +
the symmetry condition at € = -1,

The question of how to select the values that are assigned at plus

and minus infinity is a serious problem in itself. The literature contains a
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number of papers which use time-marching methods to solve the Euler equa-
16-20

tions. In several of these, the method of characteristics is applied

to the equations (in nonconservative form) in order to calculate the solution
at the grid boundaries. In other papers, certain dependent variables such

as the pressure or outlet flow angle are prescribed, and the remaining vari-
ables deduced from these. However, there does not exist at present a complete
treatment of this "Trefftz-plane" problem, connecting the far-field solution
to conditions at the blades, and giving the relations between the dependent
variables themselves.21 A prominent example of what is missing from the
current literature.is the connection between the pressure far downstream and
the trailing-edge conditions: in the nonlinear small-disturbance theory,

the imposition of the Kutta condition at the trailing edge uniquely deter-
mines the circulation at that spanwise station, which in turn defines the
pressure rise and turning angle that must be reached far downstream of the
blade row.’? The extension of this relationship to the case of the full

Euler equations has not been made. Thus, for example, it must be presumed

16. HgDonald, P.W., "The Computation of Transonic Flow Through Two-Dimen-
sional Gas Turbine Cascades', American Society of Mechanical Engineers,
Paper 71~GT-89, 1971.

17. Gopalakrishnan, S. and Bozzola, R., ''Computation of Shocked Flows in
Compressor Cascades', American Society of Mechanical Engineers, Paper
72-GT-31, 1972.

18. Kurzrock, J.W. and Novick, A.S., "Transonic Flow Around Rotor Blade
Elements"”, Transactions of the American Society of Mechanical Engineers,
Vol. 97, December 1975, pp. 598-607.

19. Thompkins, William T., Jr., 'An Experimental and Computational Study
of the Flow in a Transonic Compressor Rotor', MIT Gas Turbine Laboratory
Report No. 129 (May 1976).

20. Veuillot, J.P., "Calculation of the Quasi-Three Dimensional Flow in a
Turbomachine Blade Row', Trans. ASME (A), Journal of Engineering for
Power 99, (1977) 53-62.

21. Karamcheti, K., Principles of Ideal-Fluid Aerodynamics, Wiley and Sons,
New York (1966) Section 19.4.
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that the assignment of an outlet flow angle implies a violation of the Kutta

condition, and this in turn renders the circulation and pressure rise non-
unique. It is not clear from the published literature how these problems are

resolved in current computer codes.

The present research has not addressed these questions, because of
the instabilities encountered in the process of developing the program. In-
stead, a set of boundary values, described below, was assigned at downstream
infinity. These values were adequate for use in the early development of the
computer program, but will have to be replaced by a more exact formulation,

after the grid-related oscillations have been removed.

Thé specific choices for the variables at downstream infinity were
made as follows: the static pressure ratio across the blade row was assigned
as an input, and the density was found from the isentropic relation. The
area ratio between outlet and inlet was assigned, and from this the axial
velocity component Wy was found by conserving the mass flow 0AW,. The radial
velocity W,.was set equal to zero, and the circumferential component Wg was
chosen, following Reference 19, as that value which gives a uniform static

pressure, i.e., radial equilibrium requires

1 2
= —r_-[wa-wr] , o Wgswr (4-12)
The value of the quantity K then follows from these specifications.

Wake Conditions

Whenever a compressor blade is acted on by a 1ift that varies with
radius, a sheet of vorticity will be shed from the trailing edge. The origins
of this vortex sheet can be seen in the nonlinear small-disturbance results
of Reference {; Figure 11 of that paper shows the distributions of radial
velocity at a sixty-percent chord location. These distributions retain the
same qualitative behavior all the way to the trailing edge, i.e., they reveal
a discontinuity at the trailing edge, which trails downstream as a vortex

sheet.
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In the small-disturbance potential-theory approximation, the trailing
vortex sheets are assumed to lie on the helical surfaces defined by the inlet
flow. In a full nonlinear treatment, they must be allowed to deform, away from
these surfaces, as they move downstream. This problem has been studied re-
cently in a series of papers by McCune and Hawthorne.zz.24 These papers
constitute a basis on which to model the vortex-sheet trajectories in a
finite-difference code. For example, the discontinuities in radial velocity
that occur at the trailing edge would have to be inserted at the trailing-edge ’
location, and the locus of this discontinuity would have to be followed down-
stream. The conformal transformation used in the present work is not well

[ suited for doing so, however, since the path followed by the trailing vortex
sheet in the £ , 4 plane (Figure 3) is a line that leaves the trailing-edge
image, and spirals around the image of the point at downstream infinity. It -
would be virtually impossible to use a grid that is fine enough to resolve
these discontinuities numerically. In order to facilitate the resolution of
the vortex-sheet behavior, it would be necessary to use a different coordinate

transformation, in which the path of the vortex sheet is not as convoluted

as it is in the case of the Ives mapping. {

As an alternative, it might be possible to trace the magnitude and
location of these discontinuities by "floating vortex-sheet fitting', in
analogy to the procedure of floating shock fitting. The development of such

a procedure was not considered in the present research.

13
9

McCune, J.E., and Hawthorne, W.R., "The Effects of Trailing Vorticitv
on the Flow Through Highly Loaded Cascades'', Journal of Fluid Mechanics,
74 (1976) pp. 721-740.

23. McCune, J.E., '"Three-Dimensional Inviscid Flow Through a Highlv Loaded
Transonic Compressor Rotor', pp. 20-59 of Transonic Flow Problems in
Turbomachinery, ed. by T.C. Adamson and M.F. Plat:zer, Hemisphere
Publishing Co., Washington (1977).

24, McCune, J.W., '"Three-Dimensional Flow in Highly Loaded Axial Turboma-
chines", ZAMP 28 (1977) 865-878.




Section 5
RESULTS

A two-dimensional cascade was chosen for the purpose of debugging
the program. The blade geometry, shown in Figure 5, is the same as used
by Rae and Homic: (Reference 25). It was not chosen on the basis of any
design method, but only for the purpose of facilitating a demonstration cal-
culation. The solidity is moderate, and the large leading-edge radius

minimizes strong flow field gradients in that region.

In order to do a two-dimensional case, the hub and shroud radii were
taken to be 1} /C, = 99.5, © 17 /Cq = 100.5, and the calculations were done
at r/c, = 100. The inlet relative Mach number and flow angle were taken
as 0.5 and 33°. All quantities were made dimensionless by dividing by the
appropriate combination of the density and axial velocity component far
upstream, 0, and U_, , and the axial projection of the chord, ¢, . Thus,

for example, the dimensionless angular velocity was input as

. 1 tan (33%

e (5-1)

2 g ‘
—-_.—'(_j_—;_‘wﬂ"”‘mo cos B, 100

The specific-heat ratio was taken as 1.4, and the grid sizes in the transformed
plane as KMX= 11, LMX = 10, giving Ag= 0.2, AT = 2/9.

To start the calculations, an input tape was prepared, containing
values of the metrics, the Jacobian, and the radii at each grid point. On
the first run, all dependent variables were initialized at their upstream

values. At the end of each run, the metrics, Jacobians, and radii were

25. Rae, W.J., and Homicz, G.F., '"A Rectangular-Coordinate Method For Cal-
culating Nonlinear Transonic Potential Flowfields in Compressor Cascades",
ATAA Paper 78-248 (January 1978).
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rewritten on a new tape, along with values of the solution at the last tinme
step. This tape could then be used to start the next series of time steps.
The maximum time step allowed by the CFL condition (see Section 3) was
calculated at the end of each step; all of the results discussed below wer:
calculated with a time step equal to half this value, and with damping coe?-

ficients €, and €g equal to the (dimensionless) value of the time step. The

static pressure ratio was assigned as 1.1, and the area ratio as 1.0.

Figure 6 shows results for the velocity field after ten time steps.
In the guided channel between the blades, the results conform to what w-..:
be expected, but at the stations K= 2 and K = 10, there are very large os.:.
lations. On this coarse grid, these two stations are the outermost ones a:
which implicit calculations are done; the stations K= 1 and 11 form the
boundaries of the computational grid, and their values are updated explic:i-:

one time step behind.

The oscillations at the station K= 2 are due to the metric sirvu-
larities at K = 1; the image of the point at upstream infinity is at A = ..
and midwayv between the central pair of L - values (see Figure 3). Even
though the metrics at K = 1, L =L" and L are finite, nevertheless their
gradients are so steep at those points that they destabilize the solutior.
This effect can be displayed clearly by the results of a calculation irn «..
the solution is initialized to the freestream values, and then advanced -

a single time step. For the two-dimensicnal case, the basic equation -.

becomes

i,
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But the quantities in the square brackets on the right side of this equation
are each zero (as can be verified from Eq. 3-20, with 2r/dn = 1). This result
is exact, analvtically, but when evaluated numerically, especially on a coarse
grid, the result is nonzero, and of a magnitude consistent with the magnitude
of the oscillations that develop. Part of the problem, in the present case,
is due to the use of analytic formulas for the metrics; it is pointed out in
Reference 8§ that metrics which are generated numerically, by differencing

the coordinate mapping itself, are actually less sensitive to this problem

than the analyvtic metrics.

In an attempt to alleviate this problem, the values of the metrics

- - L=L"
at K = 1, L=L" and L* were changed, as follows: the value of g;/ﬁ-)K_1
L=Lt -
which is equal to - ;;/Gg)Kr’ , was chosen so as to make the factor multiply-
L=L” s
ing &G, numerically equal to zero. Next, the value of g; )K=1 , which is

L=L* ) .
equal to - §; )K_1 , was changed so that the factor multiplying £, would
have the same value at K =1, L=L" and L* . The result of this modifica-
tion is shown in Figure 7, at the tenth time step. Comparison with Figure 6

shows that a considerable smoothing of the flow pattern at K= 1 was achieved.

Analogous modifications were made at K = KMX, but these did not
vield the same degree of success, presumably because the solution on this
line is also affected by the singular region near the trailing edge. Several
attempts were made to overcome this problem, by using extrapolation to update
the points near the trailing edge. These attempts were not successful. More-
over, this approach is difficult to justify, since points on the surface
near the trailing edge are very important to the solution, in that they are
the ones used in applving the Kutta condition, as well as in enforcing the
surface tangency condition. Any extrapolation procedure alters the role of
these boundary points, making them dependent on the field behavior, rather

than the other way around.

The metric-singularityv problems encountered in this research are

aggravated bv the use of the coarse grid, and by the fact that the grid wraps
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around the trailing edge of the blades. While the use of a finer grid might
alleviate the situation somewhat, it was not used, since it appeared that

lengthier calculations would not be justified until the more basic cause -

the trailing-edge singularity - was eliminated.




Section 6
CONCLUDING REMARKS

The experience gained in this study suggests strongly that type of
grid used (where the metrics are evaluated from analytic formulas, and the
grid is wrapped around the trailing edge) is not suitable for use with the
implicit time-marching algorithm. The evidence is not conclusive, however;
it may be that use of a finer grid and some other special treatment of the
metrics in the region of the singularities could stabilize the calculations.
However, a preferable course, for future developments, appears to be the use
of grids which are free from singularities, especially in the trailing-edge

region,

After the grid-induced instabilities have been removed, a number of
other problems will remain. These problems were not considered in depth
during this research, because of the amount of effort devoted to the insta-
bility problems. Among the topics that will have to be considered are the
Kutta and far-field conditions, the location and strength of the trailing vor-
tex sheets, and the interaction between all of these. Also remaining is the
problem of shock capturing in genuinely transonic flows, which may require
alterations in the difference formulas used. Finally, there are several ad-

vances in the time-marching algorithm that have taken place during the period

ol
of this research, such as the technique of flux vector splitting.~6 These
should be considered for incorporation in the numerical method.
26. Steger, J.L., and Warming, R.F., '"Flux Vector Splitting of the Inviscid

Gasdynamic Equations with Application to Finite Difference Methods",
NASA TM 78605 (July 1979).
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APPENDIX

The dependent variables are defined as:

L

where —
%7 =

Thus the matrices

A= 25

=

2%

~ - -
r ¥
L% Y
UV = P | =Y
P e Y
L./( 1 L%
ow, A rua ]
P W Wy %, Uy S,
FU=| prpw® | = 7o+ ”a/u
P W, W, /u
L_w,_(K+,0) u, (u;-f?v)
o
)
AU) = f"‘/o(we*wrjz

oy (2cor £ my)
o

£ =

)=

a a
Uy + Uy +

s 2
/

| w K+ 2)

2P
PH

PWaWe

L%

P W
P WeWr
L+ P
w, (K»gp)

o

o

(-1) [u

A, B, C, and D are

) = PN
? </ 9,{7.

2y,

]

o
f + U (uyu/ -+ wr-)"
-~y (2er + Uufs,)

L

s 7
P+ U,

2“2 z{’/a(l

Uy U, /u,
_—%’-:‘- ( U *f")__

% /%,
U %y %,
/ - l(z'/u,
K (up +;0)

L ¥,




APPENDIX (continued)
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APPENDIX {continued)
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